Extensions 1→N→G→Q→1 with N=C23xC18 and Q=C2

Direct product G=NxQ with N=C23xC18 and Q=C2
dρLabelID
C24xC18288C2^4xC18288,840

Semidirect products G=N:Q with N=C23xC18 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23xC18):1C2 = C9xC22wrC2φ: C2/C1C2 ⊆ Aut C23xC1872(C2^3xC18):1C2288,170
(C23xC18):2C2 = D4xC2xC18φ: C2/C1C2 ⊆ Aut C23xC18144(C2^3xC18):2C2288,368
(C23xC18):3C2 = C24:4D9φ: C2/C1C2 ⊆ Aut C23xC1872(C2^3xC18):3C2288,163
(C23xC18):4C2 = C22xC9:D4φ: C2/C1C2 ⊆ Aut C23xC18144(C2^3xC18):4C2288,366
(C23xC18):5C2 = C24xD9φ: C2/C1C2 ⊆ Aut C23xC18144(C2^3xC18):5C2288,839

Non-split extensions G=N.Q with N=C23xC18 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23xC18).1C2 = C22:C4xC18φ: C2/C1C2 ⊆ Aut C23xC18144(C2^3xC18).1C2288,165
(C23xC18).2C2 = C2xC18.D4φ: C2/C1C2 ⊆ Aut C23xC18144(C2^3xC18).2C2288,162
(C23xC18).3C2 = C23xDic9φ: C2/C1C2 ⊆ Aut C23xC18288(C2^3xC18).3C2288,365

׿
x
:
Z
F
o
wr
Q
<